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We suggest a new numerical method to calculate temperature fields and thermal conductivity coefficients in 

structurized systems. I t  allows one to describe the processes of heat conduction in deformation and 

transformation of the structure of the system. Calculations were carried out for an organomineral system 

and for a system consisting of sand, water, and air. 

As is known, in natural disperse systems such as soils, peat, sapropels, and their composites the processes 

of heat and mass transfer depend strongly on the structure of the systems themselves. Here the structure should 

be understood in the broad sense of the word. In this category we can also place elemental composition, mutual 

arrangement of components, distribution of pores in a system, and the large number of their levels. 

To calculate the processes of interrelated heat and moisture transfer and transformation of a structure, we 

developed and continue to refine the method of dynamic structural elements [1 ]. It is based on the premises that 

a system consists of structural elements, at the center of which the whole mass and energy corresponding to these 

elements are concentrated. The interaction of neighboring elements is accomplished through linear connections 

along which exchange by heat and mass occurs. For a viscoelastic mechanical model it is assumed that under  the 

action of viscous forces appearing on the connections due to their linear deformation and of the forces of frictional 

viscosity due to the difference in the velocities of neighboring elements, the displacement of the element over time 

takes place. And moreover, structural elements can come into contact with one another in a random fashion and 

change their neighbors. This approach allows one to model the transformation of the structure of a system up to 

the formation of cracks and cavities. 

Without going into the problems of mechanical character, we will center our attention on the problems that 

arise with adequate modeling of the processes of heat exchange in a structurized system. Here, a very important 

problem is the establishment of the relationship between the characteristics of heat transfer along the connections 

of discrete structural elements and similar parameters of the system which are typical of a continuous medium. Let 

us consider the scheme of thermal interaction between elements (Fig. I). Marked in Fig. la are: 1) nodes of the 

elements; 2) linear connections between the elements; 3) faces of a structural element; 4) vertices of a structural 

element. In a general case a structural element is a polygon the number of whose vertices can change from 4 to 8. 

These elements are located randomly over the entire body. To determine the boundaries of the structural element 

unequivocally, we will agree that its vertices correspond to the geometric center of the triangle formed by the nodes 

of contacting elements. Assuming that the heat flux qik over the connection between the elements is proportional 

to the temperature gradient on this connection and to the length of the face by which the elements contact, we will 

write 

T i -- T k 
qik = - '~el li k L ik"  ( 1 )  

For geometrically regular figures, for example, for a hexagonal array, we will bring Eq. (1) to the form 
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Fig. 1. Schematic 
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of a structural  element: a) general; b) with additional 

3~ 
qik =" -- J'el ( T i  -- Tk )  tan 7", 7" = 3 "  (2) 

It can be verified here tha t  J'el corresponds to the thermal conductivity coefficient of a homogeneous continuous 

medium. Calculations of heat  fluxes from formulas (1) and (2) for test problems show that these relations are 

general and allow one to describe the processes of heat  transfer ra ther  accurately for figures of arbitrary shape. 

Here 7' is the averaged angle of a structural element,  which is defined as 2 z / N .  In the general case the heat  flux 

over the connection between the elements i and k can be found from the formula 

2 t a n  (~//) tan (~kk) 

q i k = - - 2 ( T i - - T k )  tan (~i)  + tan (~k)  " (3) 

Calculations from relation (3) showed that  deviation from the test values of heat fluxes for a body split up 

into 30 • 30 structural e lements  does not exceed 2%.  To decrease the error of calculations, it is necessary, instead 

of the averaged angle 7", to use in formula (3) the specific angles 7"ik that  correspond to the geometrical features of 

the connection. 

Expression (3) yields satisfactory results for a single-component system. In the case of two and more 

components with different  thermal conductivity coefficients it is necessary to somewhat modify the computational 

scheme. In addition to the nodes of the elements, we will introduce addit ional  nodes at the intersection of the 

boundary of the structural  element and linear connection. They are denoted by digits 1-5 in Fig. lb. Each additional 

node is connected with two main nodes of the elements that form a linear connection and with four additional 

nodes. The heat flux between the node of the element  and an additional node is calculated from the formula 

1 T i -  :% 
qik = -- - - ; t  - -  L ik  = --2t ( T  i - T ik  ) tan 7". (4) 

2 li' k 

The heat flux between two additional nodes is given by the expression 

qjksi = -- --]t  , Ljksi = -- - - ~  (T i j  - Tik  ) tan 7" + tan - 7" 
2 ljk 4 

(5) 

Using formulas (4) and (5), it is possible to obtain the temperature field in a system that  has components 

with different thermal conductivity coefficients, including solid, liquid, and gas phases. 

This approach can also be used to calculate the temperature field of a three-dimensional system consisting 

of structural elements in the form of polyhedrons. Here relations (1), (4), and  (5) in their general form, just as 

for a two-dimensional case, remain valid. Only the area of contact over the line of connection will represent a 

polygon. For a hexagonal  array,  when one element contacts with 12 neighboring ones, the surfaces that contact 
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Fig. 2. Unit cell for  a system consisting of sand,  water, and air. 

perpendicularly to the line of connections represent  pentahedrons.  The  surfaces of side contact are triangles here.  

Calculations yie ld  that the area  of the main contact for a hexagonal  a r ray  is equal to Sm -- 0.3469/2 and  for the side 

contact it is Ssi - 0.13196/2. Tes t  solutions showed that the er ror  in the determinat ion of heat fluxes is equal to 

about 1%. Tak ing  into account the fact that  calculation of three-dimensional  systems requires a large amount  of 

computations, a version of finding thermal  conductivity in a cylindrical coordinate system has been developed for 

three-dimensional  problems with axial symmetry .  In this case, to determine heat fluxes, formulas of type (1), (4), 

and (5) must  be  supplemented with factors :~(r i - r~) that take into account the specifics of three-dimensional  

problems with axial  symmetry .  

To calculate nonsta t ionary processes of heat exchange in struclurized systems, along with heat  fluxes it is 

necessary to consider  the heat  capacity of the structural element.  This can be done by finding the area of the 

structural e lement  and for two-dimensional  problems by then multiplying by the densi ty  and specific heat  capacity 

to obtain: Cel = cspoSer The  area of the element Sel is calculated from the coordinates of the element  and its 

neighbors. F rom Fig. la  it is seen that Sel is split up into triangles. One can easily calculate the area of the triangle, 
1 

knowing the  coordinates  of its vertices, f rom the formula S t r=  -~[(x 2 - xl)(Ya - Y]) - (x3 - Xl )(Y2 - Yl) ]. T h e  

calculation of the  tempera ture  field is made  with the use of an explicit scheme at each time step. The  excesses of 

temperatures at  the additional nodes are  determined by using the values of temperatures  at two nodes of the 

elements and  four  additional nodes at the  previous step, as shown in Fig. lb. Here  the following relation is used: 

Y. qj 
AT - / A r ,  

1 1 
Pi Cspi ~ Si + Pk Cspk 2 Sk 

where qj a re  the  heat  fluxes def ined by  formulas (4) and (5). 

The  excess of temperature  at the main nodes of an element  is calculated from the values of temperatures  

at the addi t ional  nodes that sur round the given element, with the formula 

~q j  
AT = i A r ,  

/9 r Sel /2  

where qj is the heat  flux de termined from formula (4). 

We will consider  the structure of a specific disperse system. Let it consist of sand, water, and air. For this 

system we will adopt  a cubic array of spherical  particles of sand that  have a point of contact among themselves. 

The pores be tween particles are  filled with water  and air. For  this system we can isolate a unit cell whose thermal  

conductivity is equal to the thermal  conductivity of the ent ire  system. A two-dimensional representat ion of this 

system is shown in Fig. 2, where  1 indicates a quartz particle, 2 stands for water seals, 3 for an air pore, and 4 

indicates the zone  of contact. A three-dimensional  representat ion of this cell can be obtained as a result  of rotation 

about the left  vertical axis. In this way we can obtain a three-dimensional  problem with an axial symmetry  for a 

system consist ing of sand, water,  and air. It is also necessary to take the contact zone between the particles into 

account. Several  elements in the left upper  part  of the unit cell cannot  have the thermal  conductivity of ei ther quartz 
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Fig. 3. Thermal  conductivity coefficient of quartz sand vs moisture  content:  

1) numer ica l  calculation; 2) experimental  data.  

or water,  since the s t ructural  element has dimensions that exceed the volume occupied by ei ther  the quartz or  water  

in the zone of contact.  There fore ,  from the left upper angle along the horizontal  we must take several e lements  

whose thermal conductivi ty must  differ from that of quartz or water. Moreover, for each element  there  is its own 

angle a = arc sm R ' where  Xel is the horizontal coordinate of the center of the structural  element,  which is reckoned 

from the left vertical s t ra ight  line. The  number  of these elements determines the l inear dimension of the contact  

zone along the horizontal .  T h e  size of this zone should be such that the next  e lement  following it could be ent i re ly  

in water  and could de t e rmine  its properties. The  thermal conductivity of the contact  zone is calculated from the 

2w(l + h) a 
formula ,;t c = ,1.q ~.wl + ~-qh' where  h -- 4R sin 2 ~- + h0, h 0 = 0.001R. 

Using the procedure  proposed above, an algorithm was composed and a program was writ ten in the language 

C to calculate the thermal  conductivity of composite materials, with the following values taken for the components :  

2q = 7, 2 w = 0.6, 2 a -- 0.025. The  calculated dependence of the thermal conductivity of quartz sand on moisture  

content  and the  da ta  ob t a ined  from the exper iment ,  which are  presented in Fig. 3, show the i r  sa t isfactory 

ag reemen t .  Thus ,  t he  p r o c e d u r e  developed allows one to calculate the t he rma l  conduct iv i ty  coef f ic ien t  of 

i nhomogeneous  d i s p e r s e  sys t ems  with account  for  the  specif ic  fea tures  of the i r  s t ruc tu re  and  the  mutual  

a r rangement  of the components .  As applied to the calculation of the thermal conductivity coefficient of sand systems,  

this procedure makes it possible to take account of the thermal  conductivity coefficient of the particles of sand,  

moisture,  and air pores,  and  also of the special features of the thermal contact between particles. 

Using the me thod  developed, calculations of the thermal  conductivity of organomineral  sys tems,  which 

correspond to the cubic a r r ay  of mineral particles, were carr ied out. It was assumed that  a moist organogen 

component  was located in the contact zones of mineral  particles. The  system considered consisted of quartz ,  moist 

peat, and a vapor-air  phase.  Due to the fact that the thermal  conductivity coefficients of organogen and  water  

components  have closely coinciding values (0.47 and 0.6 W/ (m"  K), respectively) [2, 3 ] and that  moisture is located 

mainly within the peat aggregates,  the p e a t - w a t e r  system is considered as a single component  whose thermal  

conductivity can be calculated by the method of interpenetrat ing components [4 ]. Taking account of what has been 

said above, the s t ruc tura l  model  of an organomineral  sys tem is presented as a three-component  sys tem with 

interphase surfaces. T h e  scheme of a unit cell of such a system is presented in Fig. 4, where  1 denotes  a quartz 

particle, 2 moist peat,  and  3 a vapor-air phase. This unit cell presupposes axial symmet ry  about  the axis parallel 

to the heat flux. The  the rmal  conductivity coefficients of the components and the vapor-air  phase took the following 

values: Jlq = 7, ;tin. p -- 0.55, ;tv. a = 0.07. The latter value was selected, taking account of heat  exchange  due  to 

evaporation and condensa t ion  of vapor in the pores. In calculations the relationship between the mineral ,  organogen 

582 



Fig. 4. Unit cell for a system consisting of quartz, moist peat, and air. 
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Fig. 5. Thermal conductivity coefficient of organomineral systems vs the 

volume fraction of air pores Va.p with a different volumetric portion of sand 

component Vs: 1) Vs = 0.1, 2) 0.2, 3) 0.3, 4) 0.4, 5) 0.5, 6) 0.55, 7) 0.6, 8) 

0.66. 

components, and pore space filled with a vapor-air phase was varied. Concurrently we made calculations of the 

thermal conductivity of the indicated systems by the analytical methods used to determlne the thermal conductivity 

coefficients of inhomogeneous systems [4 ]. In these calculations, first we determined the thermal conductivity of 

a mixture of the organogen component with the vapor-air phase by the method of interpenetrating components and 

then the thermal conductivity of the entire system, where the mineral component was considered to be an isolated 

inclusion. Data on the thermal conductivity coefficients of organogen systems obtained by means of the method 

developed (solid lines) and similar data obtained by analytical methods (dashed lines) are presented in Fig. 5. 

Each curve corresponds to a certain relative volume of the mineral component and represents the thermal 

conductivity coefficient as a function of the relative volume of a vapor-air phase. It is assumed that the remaining 

part of the relative volume is filled with the moist organogen component. 

Comparison of the data given indicates that in the absence of a free porous .space, up to the volumetric 

fraction of the mineral component, equal to 0.55, good correspondence is observed between the values of the thermal 

conductivity coefficients found by the different methods. On increase in the volume fraction of the mineral 

component up to 0.6 and more, certain differences are observed in the calculated data obtained by different 

methods. It may attain 11% and is explained by the effect of the contact zone on the thermal conductivity coefficient 
at large values of the relative volumetric mineral component, corresponding to direct contact of mineral particles. 
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The analysis of the results shows that in the presence of a vapor-air phase for systems with a relative 

volume of mineral component V s not exceeding 0.3, satisfactory agreement of the data compared is observed. But 

at larger values of Vs the observed difference between them increases with increase in the relative volume of the 

vapor-air phase Vv.a. An especially large discrepancy is observed for systems containing a mineral component in 

an amount corresponding to the values Vs > 0.5 and Vv.a > 0.2. 

Thus,  the analysis  carried out shows that  calculation of the thermal  conductivity coefficients of 

inhomogeneous structurized systems must be made with account for their structural features. 

In conclusion it should be noted that the method developed allows one to obtain an adequate 

description of the processes of heat conduction in the processes of deformation and transformation of structure 

in natural disperse systems. This method directly takes account of the displacements of structural elements 

relative to one another and also of the changes in the structure and inhomogeneities of a disperse system, 

which makes it possible to adequately calculate convective and conductive heat exchange in the processes 

of deformation and transformation of the structure of disperse systems. This approach makes it possible 

to obtain a similar description also of the processes of the diffusion of moisture and water-soluble compounds. 

This allows one, when solving problems of interrelated transfer of heat, moisture, and water-soluble compounds, 

accompanied by the deformation and transformation of structure, to construct appropriately a computational 

scheme with a variable nodal connectedness. The method given can be used also for finding coefficients 
of heat conduction, diffusion of moisture, and diffusion of water-soluble compounds of inhomogeneous structured 

systems. 

N O T A T I O N  

qik, heat flux along the connection between the elements i and k, W; qiksi, heat flux between additional 
nodes on the connections i, k and i, ./, W; qf heat fluxes, W; T i, temperature of the element i, K; Tk, temperature 

of the neighboring element k, K; Tik, temperature at the additional node over the connection between the elements 

i and k, K; Tii, temperature at the additional node over the connection between the elements i and j, K; AT, 

increase in temperature, K; lik, length of the connection between the elements i and k, m; Lik, length of the 
face of contact between the elements i and k, m; ljk, length of the connection between the main and additional 

nodes, m; l)k, distance between additional nodes over the connections i, k and i, j, m; Ljksi, length of the line 

of the side contact, m; l, length of the connection between the main elements, m; .ri, rk, radial coordinates of 

the nodes of the elements i and k, m; x i, Yi, coordinates of the vertices of a triangle, m; R, radius of a quartz 

particle, m; a,  angle reckoned from the vertical axis, rad; h, thickness of a water interlayer, m; h o, thickness 

of a water interlayer at a = 0, m; Sel , area of an element, m2; Str, area of a triangle, m2; Sin, area of the main 

contact, m2; Ssi, area of a side contact, m2; Si, one of the areas of a triangle into which the element i is split, 

m2; Sk, one of the areas of a triangle into which the element k is split, m2; 2el, thermal conductivity coefficient 

of a structural element, W / ( m . K ) ;  2, thermal conductivity coefficient of a homogeneous continuous medium, 

W/(m-K);  qq, thermal conductivity coefficient of a quartz particle, W/(m. K); 2w, thermal conductivity coefficient 

of water, W/(m-K);  ;t c, thermal conductivity coefficient of the contact zone, W/(m-K) ;  ;tin.p, thermal conductivity 

coefficient of moist peat, W/(m- K) ; 2a, thermal conductivity coefficient of air, W/ (m.  K) ; 2v.a, thermal conductivity 

coefficient of a vapor-air phase, W/(m.K);  Ceb heat capacity of an element, J /K;  Cso, specific heat, J / (kg-K);  
- �9 3 

Cspi, Csp ~, specific heats of the elements i and k, J / (kg-K);  p, density, kg/m ;/oi, l~ densities of the elements 
i and k, kg/m3; ~o, angle between the connection and the line of a side contact, rad; ~Oik , angle corresponding 

to the geometric parameters of the connection, rad; Vs, volume fraction of the sand component; Va. o, volume 

fraction of the air pores; u, moisture content, kg/kg; N, number of vertices of an element; Ni,  number of vertices 

of the element i; Ni, number of vertices of the element k; Az, step in time, sec. Subscripts: si, side; el, element; 
m, main; q, quartz; w, water; c, contact; m.p, moist peat; v.a, vapor-air; sp, specific; s, sand; a.p, air pores; 

tr, triangle; a, air. 
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